COMPREHENSIVE SITE PROFILE

Oswego County Airport Industrial Park
Howard Road Property
Tax Map Parcel #202.00-08-09.1

January 2011

Prepared by
[Logo]

[Initials]
Howard Road Parcel
Tax Map Parcel No. 202.00-08-09.1
Town of Volney, Oswego County NY

Table of Contents

I. Parcel Location ... I-1
 Location
 Ownership
 Site Assets

 Figure I-1: Project Location

II. Existing Conditions .. II-1
 Land Use & Zoning
 Transportation Facilities
 Utilities & Community Services
 Topography & Soils
 Environmental Site Assessment
 Environmentally Sensitive Conditions

 Figure II-1: Zoning
 Figure II-2: Regional Transportation Network
 Figure II-3: Utilities
 Figure II-4: Topography
 Figure II-5: Soil Types
 Figure II-6: Hydric Soils
 Figure II-7: Wetlands & Floodplains

III. Site Development Opportunities ... III-1
 Buildable Areas
 Potential Land Use

 Figure III-1: Buildable Areas
 Figure III-2: Conceptual Site Layout

Appendices

Appendix A: Phase I Environmental Site Assessment

Appendix B: Preliminary Geotechnical Information & Soil Borings Data

Appendix C: Preliminary Wetlands Report
Howard Road Parcel
Tax Map Parcel No. 202.00-08-09.1

I. Site Location

Location

The Howard Road Parcel is located at the northeast corner of the intersection of Oswego County Route 176 and Howard Road, immediately north of the Oswego County Airport in the Town of Volney, Oswego County, NY (see Figure I-1). The site is approximately 2 miles northeast of the City of Fulton and 9 miles southeast of the City of Oswego. The Port of Oswego on Lake Ontario is approximately 10 miles northwest of the site.

Ownership

The property is owned by Operation Oswego County, Inc., the authorized development agency for Oswego County.

Site Assets

The site consists of approximately 45.85 acres of undeveloped property. The parcel is contiguous to, and part of, the 170 acre Oswego County Airport Industrial Park.

The Oswego County Airport is a general aviation airport that provides air service to private aviation, including local charter services to industrial and business clients. The Oswego County Airport is approximately 25 miles northwest of Syracuse Hancock International Airport, which serves the Syracuse metropolitan area.

The Oswego County Airport maintains two paved runways: a 5,200 foot by 100 foot north-south runway and a 4,000 foot by 100 foot east-west runway. The airport handles approximately 25,000 takeoffs and landings annually.

The Oswego County Airport provides:
- State-of-the-art Instrument Landing System (ILS)
- Auto Pilot Control Lighting
- Hangar stalls and tie-downs
- Charter service
- Terminal building
- Flight school offering a joint aeronautical college degree program with Cayuga Community College and Dowling College
- 100 low-lead and Jet A fuel
SITE LOCATION
Oswego County Airport Industrial Park
Volney, NY

FIGURE I-1
II. Existing Conditions

Land Use & Zoning

The site is presently undeveloped. The parcel consists of a mix of wooded areas and old field shrub vegetation, and this description applies to much of the surrounding area. Existing land uses adjacent and in proximity to the site include the Oswego County Airport and several single-family residences along County Route 176 and Howard Road. Several regional businesses and airport-related facilities are located adjacent to the airport primarily along Airport Drive via County Route 176. Airport Drive is the main entranceway to the airport. Several additional businesses are located along the south side of Howard Road.

Areas east of the site are relatively undeveloped with few houses. A former (Volney) landfill facility is located northwest of the Howard Road/Silk Road intersection east of the site. A small mobile home park exists along Silk Road northeast of the site. Single family residences exist north and northwest of the site along County Route 176 and Rowlee Road.

The site is zoned Industrial (I-1) by the Town of Volney (see Figure II-1). The OOC property located immediately east of the site, and the airport itself, are also zoned I-1. Parcels west of the site and west of County Route 176 are zoned R-1 Residence. Areas north and northeast of the site are zoned Agriculture (A). The Town’s Zoning Ordinance and Map should be consulted for specific information, some of which is summarized below.

The Town of Volney I-1 zoning district permits light industrial uses including research laboratories and the manufacture, fabrication, extraction, assembly, warehousing and other handling of material in compliance with Section V of the Zoning Ordinance. Extractive operations and soil mining are subject to Special Use Permit and Site Plan approval.

The Zoning Ordinance lists Prohibited Industrial Uses as well as Performance Standards for uses within Industrial Districts. Specific Standards exist for the following:

- Storage facilities
- Loading Docks
- Landscaping
- Fences and Walls
- Off-Street Parking and Loading
- Signs
- Buffer Strips

Area and Bulk regulations in the I-1 include:

- 1 acre area minimum with a 200 foot road frontage width
- Yard dimensions (setbacks) measured from the center of road as follows:
 - 50 foot Front yard
 - 25 foot Side yards
 - 50 foot Rear yard
- Maximum lot coverage including accessory buildings of 35%
• Maximum building height of 3 stories or 40 feet

Parking and Loading requirements in the I-1 include:
• One space per 400 square feet of floor area devoted to manufacturing
• One space for each 2,000 square feet of storage and stationary equipment
• One space for each 3,000 square feet of outside storage
• One berth for the first 10,000 square feet of floor area and one additional berth for each additional 40,000 square feet of floor area
• Each loading berth minimum dimensions: 45 feet long, 12 feet wide and 14 feet high.

Aviation Safety:
In addition to local zoning requirements, the southwestern portion of this parcel may be subject to aviation safety requirements and airport obstruction removal regulations.

Transportation Facilities

The Oswego County Airport provides general aviation services to businesses and industries. The airport maintains two paved asphalt runways: a 5,200 foot by 100 foot north-south runway and a 4,000 foot by 100 foot east-west runway. The airport provides a state-of-the-art Instrument Landing System (ILS), Auto Pilot Control Lighting, hangar stalls and tie-downs, charter service, terminal building, a flight school, and 100 low-lead and Jet A fuel.

Road and highway access to the site is provided by Oswego County Route 176 and Howard Road (see Figure II-2). NYS Route 3 is one mile south of the site and provides access to the City of Fulton and points east and west. Route 3 also provides access to the City of Watertown and points northeast, including the Adirondacks and the St. Lawrence Seaway. Route 3 can be accessed along Howard Road to Silk Road east of the site.

NYS Route 48 is 4 miles west of the site in Fulton. Interstate access is provided by I-481, located 2 miles southwest of the site. I-81 and I-90 are located 15 miles east and 22 miles south, respectively, providing north-south and east-west Interstate transportation (see Figure II-2).

CSX rail lines are located approximately 1.5 miles southwest of the site. Rail is located along both sides of the Oswego River and provides daily service between the City of Oswego, the Port of Oswego, and rail yards in the City of Syracuse.

The Port of Oswego is located 10 miles northwest of the site at the mouth of the Oswego River on Lake Ontario. The Port provides a 1,800 foot modern wharf; a 10,000 square foot shed storage facility; a 50,000 ton bulk storage facility; access to the NYS Canal System; and intermodal transportation links to highways and rail including dock-side tracks.

Utilities & Community Services

Water
The site is serviced by adjacent public water (see Figure II-3). Capacity does not appear to be an issue with servicing the parcel in light of recent water line improvements. An existing 12-inch water line is located along the south side of Howard Road from points west of the site to the County Route 176 intersection. From the intersection of Howard Road and County Route 176, a 12-inch line extends
northward approximately 900 feet along the west side of County Route 176, where it joins a newly constructed 8-inch line. This 8-inch line is part of the Airport District Extension #1 water supply project which was constructed in 2010, and provides new water lines adjacent to the site along the west side of County Route 176. The 8-inch water line extends north of the site along County Route 176 and eastward along Rowlee Road north of the parcel. A 54-inch Metro Water Board watermain is located approximately 1.5 miles from the site. A water tank is located less than one-quarter mile east of the site along the north side of Howard Road.

Wastewater
No public sewer service is available in the Town of Volney; the nearest public sanitary sewer system is located approximately 2.0 miles southwest of the site in the City of Fulton. The site is conducive to sanitary waste disposal via septic system.

Electric
Electric service is provided along the north side of Howard Road via a National Grid 13.2 KV line.

Natural Gas
Natural gas is available from a 4-inch 15# National Grid gasoline adjacent to the site.

Police
Police service is provided by the New York State Police and Oswego County Sheriff.

Fire
Fire and emergency service is provided by the Volney Volunteer Fire Corporation (VVFC), and the nearest VVFC station is located on NYS Route 3 in Fulton.

Topography & Soils
The site ranges in elevation from approximately 462 feet above mean sea level in the northeastern corner of the property to approximately 434 feet in the southwestern corner near the intersection of County Route 176 and Howard Road. The topography of the site is generally sloping downward in a westerly direction, with drainage via the small stream flowing northwesterly (see Figure II-4).

The Oswego County Soil Survey indicates the site contains seven soil types, which are listed below in descending order of their relative site development potential (see Figure II-5). Approximate acreages of each soil on site are provided. HkB soils cover much of the site and have the lowest degree of site development constraints. Cd soils are hydric and have the highest degree of development constraints (see Figure II-6). Characteristics of the soils located on site include the following:

- HkB Hinckley gravelly loamy sand, 3 to 8 percent slopes 16.2 acres
- SgB Sodus gravelly fine sandy loam, 3 to 8 percent slopes 8.6 acres
- IrA Ira gravelly fine sandy loam, 0 to 3 percent slopes 5.9 acres
- ScB Scriba gravelly fine sandy loam, 0 to 8 percent slopes 1.4 acres
- Mn Minoa very fine sandy loam 3.8 acres
- Fr Fredon gravelly fine sandy loam, partially hydric 3.2 acres
- Cd Canandaigua silt loam, hydric 6.8 acres
<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Depth to High Water Table (Feet)</th>
<th>Depth to Bedrock (Feet)</th>
<th>Potential Frost Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>HkB</td>
<td>Greater than 5 feet</td>
<td>Greater than 5 feet</td>
<td>Low</td>
</tr>
<tr>
<td>SgB</td>
<td>2.0 – 3.0</td>
<td>Greater than 5 feet</td>
<td>Moderate</td>
</tr>
<tr>
<td>IrA</td>
<td>0.5 – 1.5</td>
<td>Greater than 5 feet</td>
<td>Moderate</td>
</tr>
<tr>
<td>ScB</td>
<td>1.5 – 2.0</td>
<td>Greater than 5 feet</td>
<td>High</td>
</tr>
<tr>
<td>Mn</td>
<td>0.5 – 1.5</td>
<td>Greater than 5 feet</td>
<td>High</td>
</tr>
<tr>
<td>Fr</td>
<td>0 – 1.0</td>
<td>Greater than 5 feet</td>
<td>High</td>
</tr>
<tr>
<td>Cd</td>
<td>0 – 1.5</td>
<td>Greater than 5 feet</td>
<td>High</td>
</tr>
</tbody>
</table>

Environmental Site Assessment

A Phase I Environmental Site Assessment (ESA) was completed by CHA, Inc. in August 2010. The Phase I ESA is provided in Appendix A, and reveals no recognized environmental conditions (RECs) associated with the Property, except for:

- The presence of several corroded drums and metal containers on the Property. The containers are in poor condition and it is unknown what, if any, materials were in these containers when they were left on the property.

Preliminary Geotechnical Information & Soil Borings

Geotechnical soil borings were conducted at eight locations on site during November 2010 to verify soil conditions and relative depths to bedrock and local groundwater. The results of the soil borings are provided in Appendix B.

Eight borings were advanced as part of a preliminary geotechnical investigation to study the general subsurface conditions across the site. The preliminary geotechnical investigation incorporated three main objectives including: review of the general subsurface conditions at the project site, evaluation of geotechnical recommendations for preliminary foundation alternatives, and construction considerations.

The preliminary geotechnical recommendations included herein are based, in part, on the limited project and general subsurface information available at the time this information was prepared and in accordance with generally accepted foundation engineering practices. Once a final site layout is developed, a final geotechnical investigation should be performed to provide more specific geotechnical recommendations.

Borings SB-1 through SB-3 were advanced in the northwest corner of the project site, borings SB-4 through SB-6 were advanced in the eastern side of the site and borings SB-7 and SB-8 were advanced in the southwest corner of the site.

Subsurface Stratigraphy

Topsoil – Topsoil was encountered in all borings to depths ranging from 0.2 to 1.4 feet.

Gravel – Fine to coarse gravel was encountered beneath the fill in boring SB-1 to a depth of 16 feet. The brown gravel contained varying amounts of fine to coarse sand and trace amounts of silt. Based on SPT resistance values, the density of the gravel ranged from loose to medium compact and the moisture content was visually classified as wet.

Sand – Fine to coarse sand was encountered beneath the gravel in boring SB-1 and beneath the topsoil
in borings SB-2, through SB-8 to depths ranging from 4 to 20 feet. The brown/gray sand contained varying amounts of silt and fine to coarse gravel. Based on SPT resistance values, the density of the sand ranged from very loose to very compact and the moisture content was visually classified as moist to wet.

Gravel – Fine to coarse gravel was encountered beneath the sand in boring SB-5 to a depth of 20 feet. The brown gravel contained varying amounts of fine to coarse sand and trace amounts of silt. Based on SPT resistance values, the density of the gravel ranged from loose to medium compact and the moisture content was visually classified as wet.

Glacial Till – Glacial till was encountered in borings SB-1 through SB-4, SB-7 and SB-8 to depths ranging from 9.5 to 20 feet. The brown/gray glacial till consisted of fine to coarse sand and contained varying amounts of silt and fine to coarse gravel. Based on SPT resistance values the density of the glacial till ranged from compact to very compact and the moisture content was visually classified as moist to wet.

Groundwater measurements taken during drilling are detailed by boring in Table 1, below. A groundwater level at approximate elevation 438.0 is recommended for preliminary design.

<table>
<thead>
<tr>
<th>Boring I.D.</th>
<th>Depth (ft.)</th>
<th>Elevation (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB-1</td>
<td>4.9</td>
<td>434.1</td>
</tr>
<tr>
<td>SB-2</td>
<td>11.5</td>
<td>433.5</td>
</tr>
<tr>
<td>SB-3</td>
<td>6.0</td>
<td>434.0</td>
</tr>
<tr>
<td>SB-4</td>
<td>None</td>
<td>--</td>
</tr>
<tr>
<td>SB-5</td>
<td>9.9</td>
<td>433.1</td>
</tr>
<tr>
<td>SB-6</td>
<td>10.6</td>
<td>434.4</td>
</tr>
<tr>
<td>SB-7</td>
<td>4.9</td>
<td>437.1</td>
</tr>
<tr>
<td>SB-8</td>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

GEOTECHNICAL RECOMMENDATIONS

✓ **Foundations**

Based on the subsurface conditions encountered during the investigation, a shallow foundation system bearing on the undisturbed site soils, (sand, gravel or glacial till) would provide suitable bearing for a one-story warehouse-type building structure.

Spread footings should be founded at a minimum depth of 4.0 feet below final grade to provide frost protection.

Footing excavations should be backfilled with structural fill. Structural fill around footing excavations should be placed in loose lifts not exceeding 8 inches and compacted to 95 percent of the maximum laboratory dry density as determined by ASTM D-1557 (modified Proctor). Carefully compacted backfill will provide uniform slab support.

✓ **Access Roads and Parking Areas**
Based on the subsurface conditions encountered during the investigation, it is anticipated that the subgrade for proposed access roads and parking areas will consist of undisturbed site soils (sand/gravel/glacial till) or structural fill placed as required to raise grades. These soils will provide suitable support for access roads and parking areas, however are fine grained and will require drainage improvements.

✓ Site Preparation

The entire project area should be stripped of vegetation, topsoil, fill, concrete and any other loose, frozen or deleterious materials prior to construction. The site shall then be excavated and graded to rough elevations. Particular care should be taken to remove unsuitable bearing materials in the vicinity of proposed structure footprints, access roads and parking areas.

✓ Structural Fill

Structural fill shall be used for backfilling excavations and when raising grades. Material suitable for use as structural fill should consist of sound, durable, non-plastic sand and gravel free of stumps, roots, other organics and any frozen or deleterious materials. The structural fill shall conform to the following gradation:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-inch</td>
<td>100</td>
</tr>
<tr>
<td>No. 40</td>
<td>0 to 70</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 to 10</td>
</tr>
</tbody>
</table>

The on-site soils encountered during the investigation may not meet the requirements for structural fill. A sieve analysis conforming to ASTM D-421 should be conducted on a representative sample of previously undisturbed site soil by a qualified soils laboratory prior to the re-use of any or the site soils as structural fill.

Structural fill shall be placed in loose lifts not exceeding 8 inches and compacted to 95 percent of the material’s maximum dry density as determined by ASTM D-1557 (modified Proctor). Actual lift thickness should be determined based on the type of compaction equipment used during construction.

✓ Control of Water

Based on information gathered in the subsurface investigation, groundwater may be encountered during construction. Should groundwater be encountered, it is the responsibility of the contractor to maintain dry conditions so that construction may be completed in the dry. Dewatering methods suitable for this site include the use of sumps and pumps, tremie seal and other similar methods. Pumps should be of sufficient capacity to control the groundwater and operated in a manner which will limit the withdrawal of fines from the soil. It is recommended that pumps be installed in sumps lined with a filter fabric and crushed stone. The filter fabric shall be non-woven, six ounce per square yard or heavier with an apparent opening size (AOS) equal to or smaller than the U.S. Standard sieve size of 70 (such as Mirafi® 160N). The crushed stone shall be comprised of a 50:50 mix of NYSDOT No. 1 and No. 2 crushed stone.
Surface runoff should be diverted away from all excavations during construction.

Environmentally Sensitive Conditions

The site contains an area of wetlands and floodplain that drains the property via a small tributary stream of Black Creek from the site’s southeastern corner near Howard Road to the northwest central portion of the site along County Route 176. The wetlands are mostly wooded and potentially include both State regulated NYSDEC and federally regulated US Army Corps of Engineers wetland areas. FEMA mapping identifies a 100-year floodplain along the stream corridor (see Figure II-7). A wetlands report based on a site reconnaissance conducted by Terrestrial Environmental Specialists, Inc. in August 2010 is provided in Appendix C.

A report prepared by C&S Companies, *Environmental Assessment for Obstruction Removal*, considers a large area surrounding the existing Oswego County Airport, including the southern portion of the Howard Road site. The Obstruction Removal report includes archaeological assessments. The archaeological study, performed by Hartgen Associates, identifies two foundations on the southern portion of the site, identified in the report as Historical Area A. Shovel tests were performed in this area, and artifacts were recovered in several areas. The artifacts uncovered included glass fragments, nails, metal scraps and brick. The cellar footprint and mortared foundation is noted to be approximately 15 feet wide by 20 feet long.
WATER LINE LOCATIONS
Oswego County Airport Industrial Park
SOIL TYPES
Oswego County Airport Industrial Park
Volney, NY

Scale: 1 inch = 250 feet
WETLANDS AND FLOODPLAINS
Oswego County Airport Industrial Park

Scale: 1 inch = 300 feet

FIGURE II-7
III. Site Development Opportunities

Buildable Areas

The Howard Road parcel provides approximately 32 acres of buildable area, assuming no encroachment into existing environmentally sensitive features on the site, which include NYSDEC wetlands, 100 foot NYSDEC wetland buffers, and the 100-year floodplain associated with the on-site tributary of Black Creek. Buildable areas occur in two portions of the site, separated by the small tributary as illustrated in Figure III-1.

Buildable Area 1, located north of the tributary, includes areas of old field, shrub land and woodland. Area 1 encompasses approximately 25.5 acres of potential development space.

Buildable Area 2 is located in the northeast quadrant of the Howard Road/Route 176 intersection and the southwest corner of the site. This area encompasses approximately 6.1 acres of existing woodland.

A conceptual layout of the site is provided in Figure III-2. The layout is intended to provide a sense of how development of the site could occur in these two Buildable Areas. The layout is only conceptual and assumes use of the site by relatively small industrial uses, preferably associated with use of the Oswego County Airport.

The site could also accommodate larger industrial users, if such prospects are identified. The conceptual layout presented assumes little or no encroachment into wetlands or wetland buffers on the site. Encroachment and/or crossing of wetlands will require a detailed wetland delineation and survey and subsequent permitting through the US Army Corps of Engineers and the NYS Department of Environmental Conservation (see Appendix C).

As illustrated, both Buildable Areas on the site could be developed utilizing various-sized building footprints. Site development would need to comply with Town of Volney zoning requirements and other land use regulations, including subdivision and site plan approval requirements.

As illustrated, the site could easily accommodate upwards of a total of approximately 170,000 square feet of building footprint space, as well as the associated development of internal roadways, parking areas, and stormwater management facilities. The northern portion of the site (Buildable Area 1) may be more conducive to larger scale industrial uses due to the larger development areas available and buffers adjacent to surrounding properties. This area may be conducive to those types of industrial uses that require substantial outdoor storage areas, truck traffic, shipping and receiving, movement of equipment on site, and other activity that may generate noise and air emissions, lighting, and those that have security requirements, such as fencing. Access would be provided along County Route 176. Industrial uses would need to consider local airport operations in order to maintain safe aviation conditions. Thus, any industrial
structures would need to consider airport-related height restrictions, lighting guidelines, or other potential obstructions and restrictions such as air emissions that may cause smoke or steam.

Buildable Area 2 may be more conducive to small scale industrial uses benefitting from its location near the intersection of Howard Road and County Route 176. This area also needs to consider potential obstructions to airport operations. Existing trees that do not exceed airport requirements could be maintained as vegetative buffers and visual screens along both roadways and near adjacent residences. Access to this area could be provided along both roads as illustrated in the concept.

The conceptual layout also illustrates the potential to cross existing wetlands and the small stream on site in order to connect the two buildable areas. It may be necessary to cross these drainage features, particularly if access to adjacent properties to the east of the Howard Road site is needed for economic development purposes. Crossing the stream and wetland/floodplain areas will require permitting from the NYSDEC and US Army Corps of Engineers.

Potential Uses

The Oswego County Airport provides a very unique and important transportation asset that could help attract businesses to locate within the Oswego County Airport Industrial Park. As a general aviation airport, the Oswego Airport currently offers charter services to local business owners and residents. In addition, the airport provides short- and long-term tie-downs, as well as hangar rentals to owners of private aircraft. There are no other comparable business airports within this region of New York State.

Many companies seek fast, flexible, safe, secure and cost-effective access to destinations throughout the country and around the world. Such companies often find that small airports such as the Oswego County Airport allow them to live and work in small communities while still maintaining linkages to major population centers and/or remote manufacturing facilities through rapid air travel. Currently, National Grid and Entergy Nuclear, located adjacent to the County’s airport, fly regularly to and from the airport to inspect regional gas plants and nuclear facilities, as well as to other company-owned plants and facilities.

The Oswego County Airport offers large and small corporations the opportunity to house a small business aircraft or use the Airport’s charter service, allowing them to potentially travel to several locations before returning to their Oswego County headquarters within the same day. Hundreds to thousands of dollars can be potentially saved on hotel rooms, rental cars, meals and other travel expenses that would be needed to make a similar trip over several days via auto, train or airline transport. An airport such as the Oswego County Airport allows a company to transport its customers, suppliers, cargo, parts and mail with ease to a variety of locations. Proximity to the Oswego County Airport can represent an important business asset when time-sensitive travel and shipping/receiving are required.

The National Business Aviation Association (NBAA) and the General Aviation Manufacturers Association (GAMA) sponsored a 2009 study analyzing the key drivers of enterprise value, including financial and nonfinancial measures. The report states, “In many cases, the use of business aircraft has distinguished successful companies from their peers.” The report indicates that 95% of the “50 Most Innovative Companies” (a compilation produced by Business Week Magazine) are business aircraft users.
The NBAA and GAMA study also found that business aircraft users outperform nonusers in several important financial measures. For instance, the report cited that the average annual earnings growth was 434 percent higher for users (this is calculated using data weighed to adjust for company size).

In 2007, the Oswego County Airport Business Plan was prepared for the purpose of recommending potential means to improve the Airport’s financial performance, economic development, and operation. The recommended plan presents the following three primary initiatives:

1. **Attraction of Corporate Aviation:** Corporate and business aviation represent a large segment of the general aviation market. The business plan states that the location of the Airport near Syracuse creates a natural market area for corporate aviation. The report goes on to say that in order to do so, the Airport needs to improve its Instrumental Landing System (ILS) and its services for corporate clients. The airport manager revealed that the Airport is currently in the process of making the necessary improvements to its ILS. The Airport manager also indicated that he has had several inquiries from companies about locating within the Industrial Park. A major drawback cited by those inquiring, however, is that sewer lines are not available for dealing with waste removal.

2. **Hangar Development:** Growth of the corporate aviation market segment will depend, in part, on the availability of adequate hangar facilities. The Business Plan states that “to attract two corporate jets to the Airport within the next fifteen years, it is estimated that 15,000 square feet of conventional hangar space is needed.” In addition, it is estimated that at least 20 T-hangar units will be needed.

3. **Flight Training:** The Business Plan suggests that Oswego County leaders encourage SUNY Oswego to establish an aviation management and flight training curriculum using the Airport for training. General aviation activity generated by the flight school will create jobs and revenues for the Airport, as more students take advantage of the college program credits.

Emerging trends in the usage of small airports reveal a number of industries, operations and activities that may benefit from locating within close proximity to an airport such as the Oswego County Airport. These uses may be targeted as potential future occupants of the Industrial Park, although a detailed market and feasibility study is recommended in order to refine a list of uses for such marketing purposes.

The rural nature of the County could serve as an appropriate setting for industries and businesses that provide services and products in support of the following types of enterprises and activities:

- Aerial photography and survey
- Cayuga County College satellite campus
- Crop dusting
- Emergency management facilities
- Energy conservation products
- Experimental aircraft products
- Flight training
✓ General office space
✓ Green building materials
✓ Incubator Space (flexible space, for example, at 800 SF; 1,000 SF; 3,000 SF)
✓ Meteorological Research (SUNY Oswego)
✓ Recreational equipment manufacturing
✓ Renewable energy R&D or utility component manufacturing
✓ Turbine manufacturing and/or service
BUILDABLE AREAS
Oswego County Airport Industrial Park

BUILDABLE AREA 1
25.5 Acres

BUILDABLE AREA 2
6.1 Acres

Wetland 1
6.57 Acres

Wetland 2
1.95 Acres

Wetland 3
0.44 Acres

Wetland 4
0.44 Acres

Scale: 1 inch = 250 feet

Project Site
Buildable Areas
FEMA 100 Year Floodplain
Wetlands
100 Foot Wetland Buffer

FIGURE III-1